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Abstract

A buckling multiple-shell model of carbon nanotubes subjected to a uniform
external radial pressure is suggested based on the theory of nonlocal
elasticity. The average (nonlocal) stress incorporating the small size-scale is
introduced into the governing equations of the multi-walled carbon
nanotubes. A factor for the effect of the small size-scale is obtained, and the
relationship of the effect of the small size-scale for a simply supported
double-walled carbon nanotube to its size and buckling mode has been
investigated. Numerical examples demonstrate the effect of small size-scale.

(Some fgures in this article are in colour only in the electronic version)

1. Introduction to develop continuum models which may overcome the
limitations of atomistic simulations concerning both time-and
Carbon nanotubes (CNTs) are liiayer cylindrical shells size-scales, and which also give reasonable results for small
of rolled graphene layers composed of carbon atoms size-scales. So far, a lot obotinuum mechanics models have
a periodic hexagonal arrangent. CNTs have shown been used to investigate tipgoperties of carbon nanotubes
remarkably high stiffness ancadial strength in engineering (there are some examples in Wogt@l 1997and Li and Chou
applications. The referees listed herein (Schadlet al 20033.
1998 Maruyama and Alam2002 Pegney et al 2000 Buckling of CNTs is an important issue, and works
are some examples. Due to their large aspect ratios aedy. Ru2001 Lourie et al 1998 have deronstrated that the
small diam¢ers, CNTs have emerged as potentially attractivdassic continuum models can bsed to simulate mechanical
materials & reinfrcing elements in lightweight and high-properties of carbonanotubes. Peddiesetal (2003 pointed
strength structural composites (Li and Cha0030. It is out that nanoscale devices would exhibit nonlocal effects and
difficult to obtain characterization of nanotubes by experimerthat nonlocal continuum mechanics could potentially play a
Therfore, the investigation of mechanical behavior of carbasseful role in analysis related nanotechnology applications.
nanotubes mainly focuses oretiretical simulation by using The theory of nonlocal continuum mechanics was initially
atomistic and continuum models (e.g. Wang and Varad@foposed by Eringenl@72 and Erngen and Edelenl@72.
2005 Li and Chou2004) recently dedicated to these research is suggested that the stress state at a given point depends
areas. Due to the cost of computation for large-sizéth not only the point strain statbut also the tsain states
atomic systems, practical applications of atomistic modellir@f the other points in the body, while the local continuum

techniques are very limited. As a result, it is necessafjechanics assumes that the stestate at a given point is
only related to the strain state at that point. Thus, the theory
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Figure 1. The shell model of a carbon nanotube.

the long-range forces between atoms, and the internal size-
scale is introduced into the constitutive equations as a material
parameter.

In this paper, the average stress is used in the equilibrium
equations, which incorporate information about small Siz@\ihereqj(x, y) is the nonlocal stress tensor, and0, 0) is the
scale; a nonlocal model of multiple shells is developed for thg .4 sress tensor.
radial buckling of multi-walled carbon nanotubes.

Figure 2. The representative element.

To takethe average ofjj(x, y) in RVE, in terms of the
symmetry of the re@sentative volume element, we have

2. Basic equations of a carbon nanotube 3t (X, Y)

(nij(X, y)) = {/ [fij(O, 0)+% X
There ae a few theoes concerning shell; one of the simpler RVE X x=0,y=0
theories for thin shells is that of Lovd§88. Some represent T (X, Y) 32Tij (X, ) 2
a further simfification of the derivation of the thin shell 0y e o 202 |, y:OX
equations as proposed by Love (e.g. Donrd&B3. There 5 ' ' 1
is a summary of the thin shelgeations of several thin shell + 07T (%, y) yz]h dx dy} {/ hdx dy}
theories including: Donnell’s theory, Love’s theory and an 20y? x=0,y=0 RVE
improved theory that includes the effects of rotary inertia and 927 (X, y)
transverse shear in Prieeal (1998. =1;(0,0) + {W 4h

Consider the pre-buckling of a multi-walled cylindrical . s x=0y=0

shell (figurel) subjected to a uniform radial pressure. The za RS
radius of the shell iR and the thickness iB. The material X 0 dy/o X ax

of the shell is regarded as homogeneous, isotropic and elastic.

. . S S . 3211 (X, Y) Fa -Ly+a
The mordinate system is built with its origin in the middle 9T Y) 4h/ y? dy/ dx}
x=0,y=0 0 0

surface of the shell, with the direction parallel to the axis 29y?
of the cylinder and thg direction tangent to a circular arc, and La —Byta -1
thez direction normal to the median surface. X {4h/ dy/ dx}

0 0

The basicequations of a carbon nanotube are given in

terms of nonlocal elastic theory. Due to the long-range force,

32 (X,
— 7,,(0,0) + 02082 W *-Y)

the stress in a point is dependent on the strains of all the ax? X=0,y=0
points in the body. The average stress of a representative 927, (X, )

volume ekmentary (RVE) (figure) is used in the equilibrium +0.208* —2=

equations, which contains the parameter of C—C bondasize 9y x=0,y=0

Extracting a right hexagonal pris(the basic unit of a graphene = (1 + 0.208*V?)7; (0, 0). 2)

layer) as the RVE, the average stress of RVE can be Obtairiftﬂjation @) can be expressed approximately as
in terms of a Taylor series.

The stres atpoint (X, y) can be expanded as o = (1) = (1+ 0.208%V?)7. )
atii (X, Y) aTii (X, Y)
7ij (X, y) = 7j(0,0) + % — + ”Ty o’ Inversion of equationd) yields
y=0 y=0
1 292
i 321.”_ (X, y) ) N i 32.[”_ (X, y) ) T = (1 0.208a°V )0'. (4)
2 | 2 _
20 X =8 2t oy =8 The stress—straimelation of the carbon nanotube’s shell,
1 9%7(X, ) considering the effects of small size-scale, is given by
2y oY T @
- y 3= (1-0.20%2V%)0 =C: ¢ (5)
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where C is the elastic stiffness matrix of classical isotropi®Vaals pressure at any point between adjacent tubes should be a
elasticity. If the small size vanishesequation 6) revets to linear function of the differenci deflection at that point (Ru

Hooke’s law. 2000. Assume thaflj;1) denotes the pressure on tubéue
The stres functiong is given as to tubei + 1, which is positive inward and can be described by
1 0% 9p 1 9% Tirni =G Uy —ug™) i=12..,N) (11
Ul=—2—2, 0'2=_2, 012 = ——= . i
R 00 X R 9x96 where the subscripts 2, ..., N represent the numbers of the

tube. wj is the (inward) deflection of tubie and the an der

Substituting equation) into the geometric equatlons,Waals interaction coefficielst can be estimated by (Yoatal

the physical equations and thegjuilibrium equations of a

carbon nanotube shell, and combining these equations intooga

i i 400
equation 6), we can obtain _ RZ erg cnt? d=0142nm  (12)
D 1 9% 0%s; 1 0%00%u3 _ 1 9% 9%us " 0.16d
h T VRUs = R2 902 9x2 | RZox2 992 T R29x90 axge  Letting Ti1q); stand for the pressure on tube- 1 due to tube

19% 0.208Da?[ 9%us 1 9%us i, wecan obtain

Rx2  h [ax6 R6 966 R

. . Titni = —5—Tii+p 13)
+(2—u)<au3 +1 a%us >}+T @) Rit1
R2 %4062 = R2 9049x2 h whereR; is the radius of tube.

where the algorithnv2 is given as Applying equation {0) to each con_centrictube of a multi-
walled carbon nanotube, we can obtain

192 9

R2 962 + ax2’

D is the effective bending stiffness of the shalk is the

deflection in thez direction, andT is the normal inward

externalforce on the shell. wh

Neglecting the nonliear terms, the consistent equation for

24
V2 = _1j — 0.2082V g

8,,() _ 4| T. .

+

"R2 9p2 173 R2 x4
i i

ere

6y,(1) 6;,()) (J) 6;,())
the cylindrical middle surface is (Chei§89 £ = Pug 1Py | @) 1 U
PToaxe T RS 966 R? 8x4892 R? 9049x2
1 1 92U, , : : :
EVRY = TRaa ® =23
X represents th¢th number of the tubeVJ-2 is
Appling the algorithmV to equation 7) yields 52 1 92
2
D E 9%u 92U Vi=-2tmae
Fvg 3+ 2 o ——+ 1V4R< 8x23> I axe T R 962
) 5 Under uniform external radial pressulre the menbrane
+ 02— ! Vg (8 u23> + 2012V4R<£ 97Us ) forcespo(” priort_o_ buck_ling are constants. It follows from the
R2 a0 Raxao equilibrium condition prior to buckling that
1 VAT
+ 0. 20&%DVie — T =0 ) ) = —pPRy (15)
where equationd) is adopted, wherep? denotes the net (inward) normal pressure to the jube

6 6 6 6 prior to buckling. In addition, the radial equilibrium condition
£ = Pus 1 Pus  (2ov)f Pus 1 9Us )\ prior to buckling gives
axé  R6 966 R2 \9x%902 = R2 9049x?

AR;
0 i
During elastic pre-buckling, the magnitudes of the initial pj = —Eh R2 (16)
middle-surface radial forces are much larger than the bending !
force. Equation9) is reduced as whereAR; is the radial (inward) displacement of thth tube.
- Eho‘us  p2_, [ 8%Us T:e de;)Wlng expressions can be obtained:
VRUs + — RZ x4 HVR 9602 pi = P =C(AR — ARy) (172)
2n ot 4t _ R
+ 0.208°DVgé — VRT =0 (10)  p? = PRusy — R Pk = ck[(A Rer1 — AR
where pj is a uniform external radial pressure on a carbon Re
nanotube. —#(ARK AR 1)} k=2,...,N=1)
3. Buckling analysis (170)
0 RN 1.0
. . Pn=F— Ry PiN-pN
Multi-walled carbon nanotubes possess a hollow multilayer
structure which interacts with the adjacent tubes by van der_ ,  Rn- .
Waals forces. For linear infinitesimal buckling, the net van der P—cn Rn (ARN ARN-1) (17c)
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where pi(’(i+l)(i =12 ...,

tubei due to tubei + 1 prior to bickling, a uniform radial

externalpressurep on the multi-carbon nanotubes.
Combination of equationd.b) and (L7) gets

ON) _ O(N-1) 0@ 01 _
P =P —p,” — P, = pR.

All pressures p’ and pfj,,; can be determined from
equations 16) and (L7). Substitution ofp? into equation {5)
yields the relatlonshlps opd”( =1,2,....N), and then
substitution ofp2 into equation 18) y|elds the relationships
of po” andp.

)

(18)

Considering a simply supported multi-walled carbon

nanotubes, its buckling mode is given by

0]
Uz" =

{

whereA are real constantg; is the size of the double-walled
carbon nanotube; anth and n, both positive integers, are

=1,2...,N) (19

. mrX
A smT cosnd

the number of half-waves in the longitudinal direction and the

circumferential waveumber, respectively.

For the multi-walled carbon nanotubes, combination of

equations14) and (9) yields

Eh pO(l)
_ B4 ~m
+ Ry

Al[D(B2 +n)* = ni(BS + n3)?

+Cn?(B2 + W] — AoCin?(B2 + 12

—0.208D Ava%w, = 0 (20m)
2 Eh 4 - 2 2 2\2
Aj| D(B, J) + —=5Bmn — Uj(Bm‘f"?j)
R: R

+(Gj + ¢j_)n(BE + nf)z] — Ajacin? (BL + 12

— Aj_1Cj_1n? (B 4+ n9)® — 0.208DAja’m; =0 (2()

2 2 Eh ., pg(N) 2 2.2
AN|:D(Bm+77N) +?B Ry WN(Bm-i-??N)

+ cn_1nd (B2 + 77,2\1)2] — An—1Cn-1nd (B3 + n3)?

(20c)

— AN0.208%Daoy =0
= N), and the

where By, = &%, n; = Rli(j 1,2,3,...,
expressions otsy, @, wy are given as
w1 = (B + n){I(B + 1D (BY + n)]1 + (2—v)BZ nl}
wj = (BL + nD{(BE + n)) (B + )] + (2 — v)Binf)
o = (BS, 4+ n{){I(BE + nR) (B + 1)1

+ (2—v)BZny )
Equations 20) can be written in matrix form:

(M1 +MgA =0

(21)
whereM, My and A are given by

Eh_,
RO

)

po)
R

2(B2 + nP)?

My = diag(D(Br% +a)* +
—0.208Da%w, | =1,...

Mo = h¥,(@)nf(BE + nf)?
A= (AL A ..., AN
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N — 1) denotes the pressure onwhereh is an assembly operator and the matyiis

(¢}
—q

—q
G

|

andA is a nonzero vector. Let

)

detM; + Mg) =0 (22)
Equation @2) can be written as
N
p(p) =) ap=0 (23)
k=0

The smé#lest real root of equation2@) is the critical
buckling pressure for the multi-walled carbon nanotubes.

For N 2, the critical axial buckling pressure can be
obtained from equatior2@), which gives

Y —

Y2 —4XZ

P 2X

(24)

where

X = n2n3H1Ha(BZ + nH?(BE + n3)?
Y = (s — ToniHL(BE +n)?
+ (s — TOn5Ha(BE, + n3)?

Z= (81— T — To) — nin3(B2 + nH(BZ + n3)>.

When the eféct of small size-scale is neglected,
equation 24) can be reduced to the classic (local) result:

cr

_ SonfHi(BE + nD)? + singHa(BE + n3)? — VU2 + 4V?2
2X
(25)

where
U = sonfHi(BE + 1?)? — sinsHa(BE + 1n3)?
V = cndn3y/HiHa(B2 + n2)2(BE + nd)2.
The &pressions 0§, S, Hi, H, are given as
Eh_,
.
0.208%D (B, + n){[(BZ + n)(BE + nd)1
+(2-v)BZn?

s1 = D(BE +nD)* + + cn?(B2 + n3)?

T =

Eh
s = D(B2 + n2)* + %Bﬁ, + cn3(B2 + n3)?

T, = 0.2082D (B2 + n2){[(B2 + 12)(BE + 9]
+ (2 - U) anZ}
—CR,R?
Hy = 2

CR? + cRR, — Eh’
(Eh — cR)R,
CR?+cRR, — Eh’

2 =
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Figure 3. The rdio of ¥ via the tube’s inner radiuBy .
Figure 4. The rdio of v via the tube lengtit..

4. Numerical examplesand discussions
observed from figur8 that the effect of small size-scale on the

In the numerical results, the effective bending stiffnedS is=  radial buckling pressure decreases as the tube’s inner rRgdius
0.85 eV, while the in-plane stiffness iEh = 360 JnT2 increases, and the effect of the small size-scale will gradually
(Yakobsoret al 1996. In calculations, the size of a C—C bonddisappear when the inner tube radRisis beyond 2 nm.
is 0.142 nm, the Poisson’s ratio of the materias 0.26, and Figures4(a) and4(b) imply the relationship between the
the thickness of the carbon nanotubénis= 0.34 nm (Yoon ratio of ¢ and the tube length. It is obvious that the effect
et al 20031. of small size-scale decreases as the tube lehgihcreases.

Toillustrate the influence of small size-scale on the critica/hen the tube length reaches 2.5 nm, which is about 20 times
radial buckling pressure of double-walled carbon nanotube of the inner feature lengt, the efect of small size-scale will
the ratioyr of the pressure predicted by equati@4)(to that gradually disappear.

given by equationZ?) is discussed: Figure 5 shows that the &cts of small size-scale will
v = P increase with increases in buckling mod&sand n if the

" P effects of small size-scale existthe radial and axial direction

Y - JY2—4XZ (Rt < 2nm L < 25 nm). Figure6 shows thatlte effects

= - of small size-scale will increaswith the increase in buckling
St HL(BR +nD? + sz Ha(BE +n9)? = VUZ+4VZ e and the effcts of small size-scale will be independent
(26)  of n if the effects of small size-scale disappear in the radial
The closerlie value ofy is to 1, the smaller the effect of thedirection(Ry > 2 nm). Figure7 shows thg if the effects of
small sze-scale is; ify is equal to 1, the effect of the smallsmall sze-scale disappear in the axial directian> 2.5 nm),
size-scale will disappear. the effects of small size-s@aMill increase with an increase
Figures3(a) and 3(b) show he relationship of the effect in buckling moden, and the &ects of small size-scale will
of the small size-scale on the radial buckling pressure t#main invariable even if varies. Fgure8 reveals that, when
double-walled carbon nanotubes to its inner radRs, It is the effects of small size-scale disappear in the radial and the
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) - [Ri=0.50mI=120m

Figure 5. The effect of small size-scale via the tube modeandn. ~ F19ure 7. The effect of small size-scale via the tube modeandn.

- R1=15nm,L=0.8nm

Figure 8. The effect of small size-scale via the tube modeandn.

Figure 6. The effect of small size-scale via the tube modeandn.

radius of the carbon nanotubes. The effects of small size-scale

axial directions, the effects of small size-scale will disappegjill disappear when the size of CNTs exceeds a critical size.
if the effects of small-size scale disappear in the radial and the

axial directions. This can be interpreted as follows. The effects
of small size-scale result from the long-range force. The long-cknowledgment
range force exists only amongetfe atoms whose distance is

within a critical range. There is no force between two atomgis work is supported by the National 973 number 2004
when their distance exceeds the critical range. Therefore, thet8719402, NCET-04-0766, the National Science Foundation

isa criFicaI size of CNTs for which the effects of small sizeof China under grant number 10372031 and 10572048.
scale disappears.
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