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Abstract
A buckling multiple-shell model of carbon nanotubes subjected to a uniform
external radial pressure is suggested based on the theory of nonlocal
elasticity. The average (nonlocal) stress incorporating the small size-scale is
introduced into the governing equations of the multi-walled carbon
nanotubes. A factor for the effect of the small size-scale is obtained, and the
relationship of the effect of the small size-scale for a simply supported
double-walled carbon nanotube to its size and buckling mode has been
investigated. Numerical examples demonstrate the effect of small size-scale.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Carbon nanotubes (CNTs) are multi-layer cylindrical shells
of rolled graphene layers composed of carbon atoms in
a periodic hexagonal arrangement. CNTs have shown
remarkably high stiffness andradial strength in engineering
applications. The references listed herein (Schadleret al
1998, Maruyama and Alam2002, Peigney et al 2000)
are some examples. Due to their large aspect ratios and
small diameters, CNTs have emerged as potentially attractive
materials as reinforcing elements in lightweight and high-
strength structural composites (Li and Chou2003b). It is
difficult to obtain characterization of nanotubes by experiment.
Therefore, the investigation of mechanical behavior of carbon
nanotubes mainly focuses on theoretical simulation by using
atomistic and continuum models (e.g. Wang and Varadan
2005, Li and Chou2004) recently dedicated to these research
areas. Due to the cost of computation for large-sized
atomic systems, practical applications of atomistic modelling
techniques are very limited. As a result, it is necessary
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to develop continuum models which may overcome the
limitations of atomistic simulations concerning both time-and
size-scales, and which also give reasonable results for small
size-scales. So far, a lot of continuum mechanics models have
been used to investigate theproperties of carbon nanotubes
(there are some examples in Wonget al 1997and Li and Chou
2003a).

Buckling of CNTs is an important issue, and works
(e.g. Ru2001, Lourie et al 1998) have demonstrated that the
classic continuum models can beused to simulate mechanical
properties of carbonnanotubes. Peddiesonet al (2003) pointed
out that nanoscale devices would exhibit nonlocal effects and
that nonlocal continuum mechanics could potentially play a
useful role in analysis related to nanotechnology applications.
The theory of nonlocal continuum mechanics was initially
proposed by Eringen (1972) and Eringen and Edelen (1972).
It is suggested that the stress state at a given point depends
on not only the point strain state but also the strain states
of the other points in the body, while the local continuum
mechanics assumes that the stress state at a given point is
only related to the strain state at that point. Thus, the theory
of nonlocal continuum mechanics contains information about
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Figure 1. The shell model of a carbon nanotube.

the long-range forces between atoms, and the internal size-
scale is introduced into the constitutive equations as a material
parameter.

In this paper, the average stress is used in the equilibrium
equations, which incorporate information about small size-
scale; a nonlocal model of multiple shells is developed for the
radial buckling of multi-walled carbon nanotubes.

2. Basic equations of a carbon nanotube

There are a few theories concerning shell; one of the simpler
theories for thin shells is that of Love (1888). Some represent
a further simplification of the derivation of the thin shell
equations as proposed by Love (e.g. Donnell1933). There
is a summary of the thin shell equations of several thin shell
theories including: Donnell’s theory, Love’s theory and an
improved theory that includes the effects of rotary inertia and
transverse shear in Priceet al (1998).

Consider the pre-buckling of a multi-walled cylindrical
shell (figure1) subjected to a uniform radial pressure. The
radius of the shell isR and the thickness ish. The material
of the shell is regarded as homogeneous, isotropic and elastic.
The coordinate system is built with its origin in the middle
surface of the shell, with thex direction parallel to the axis
of the cylinder and they direction tangent to a circular arc, and
thez direction normal to the median surface.

The basicequations of a carbon nanotube are given in
terms of nonlocal elastic theory. Due to the long-range force,
the stress in a point is dependent on the strains of all the
points in the body. The average stress of a representative
volume elementary (RVE) (figure2) is used in the equilibrium
equations, which contains the parameter of C–C bond sizea.
Extracting a right hexagonal prism(the basic unit of a graphene
layer) as the RVE, the average stress of RVE can be obtained
in terms of a Taylor series.

The stress atpoint (x, y) can be expanded as

τi j (x, y) = τi j (0,0)+ ∂τi j (x, y)
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Figure 2. The representative element.

whereτi j (x, y) is the nonlocal stress tensor, andτi j (0,0) is the
local stress tensor.

To takethe average ofτi j (x, y) in RVE, in terms of the
symmetry of the representative volume element, we have
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Equation (2) can be expressed approximately as

σ = 〈τ 〉 = (1 + 0.208a2∇2)τ . (3)

Inversion of equation (3) yields

τ = (1 − 0.208a2∇2)σ . (4)

The stress–strainrelation of the carbon nanotube’s shell,
considering the effects of small size-scale, is given by

(1 − 0.208a2∇2)σ = C : ε (5)
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whereC is the elastic stiffness matrix of classical isotropic
elasticity. If the small sizea vanishes, equation (5) reverts to
Hooke’s law.

The stress functionϕ is given as

σ1 = 1

R2

∂2ϕ

∂θ2
, σ2 = ∂2ϕ

∂x2
, σ12 = − 1

R

∂2ϕ

∂x∂θ
.

(6)
Substituting equation (5) into the geometric equations,

the physical equations and theequilibrium equations of a
carbon nanotube shell, and combining these equations into
equation (6), we can obtain
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where the algorithm∇2
R is given as

∇2
R = 1

R2
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∂θ2
+ ∂2

∂x2
,

D is the effective bending stiffness of the shell,u3 is the
deflection in thez direction, andT is the normal inward
externalforce on the shell.

Neglecting the nonlinear terms, the consistent equation for
the cylindrical middle surface is (Cheng1989)
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Appling the algorithm∇4
R to equation (7) yields
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where equation (8) is adopted,
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During elastic pre-buckling, the magnitudes of the initial
middle-surface radial forces are much larger than the bending
force. Equation (9) is reduced as

D∇8
Ru3 + Eh
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where p0
2 is a uniform external radial pressure on a carbon

nanotube.

3. Buckling analysis

Multi-walled carbon nanotubes possess a hollow multilayer
structure which interacts with the adjacent tubes by van der
Waals forces. For linear infinitesimal buckling, the net van der

Waals pressure at any point between adjacent tubes should be a
linear function of the differencein deflection at that point (Ru
2000). Assume thatTi(i+1) denotes the pressure on tubei due
to tubei + 1, which is positive inward and can be described by

T(i+1)i = ci (u
(i)
3 − u(i+1)

3 ) (i = 1,2, . . . , N) (11)

where the subscripts 1,2, . . . , N represent the numbers of the
tube. wi is the (inward) deflection of tubei , and the van der
Waals interaction coefficientci can be estimated by (Yoonet al
2003a)

ci = 400Ri

0.16d2
erg cm−2, d = 0.142 nm. (12)

Letting T(i+1)i stand for the pressure on tubei + 1 due to tube
i , wecan obtain

T(i+1)i = − Ri

Ri+1
Ti(i+1) (13)

whereRi is the radius of tubei .
Applying equation (10) to each concentric tube of a multi-

walled carbon nanotube, we can obtain
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represents thej th number of the tube.∇2
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Under uniform external radial pressureP , the membrane
forcesp0( j)

2 prior to buckling are constants. It follows from the
equilibrium condition prior to buckling that

p0( j)
2 = −p0

j R j (15)

wherep0
j denotes the net (inward) normal pressure to the tubej

prior to buckling. In addition, the radial equilibrium condition
prior to buckling gives

p0
j = −Eh

�R j

R2
j

(16)

where�R j is the radial (inward) displacement of thej th tube.
The following expressions can be obtained:

p0
1 = p0

12 = c1(�R2 −�R1) (17a)

p0
k = p0

k(k+1) − Rk−1
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(17b)

p0
N = P − RN−1

RN
p0
(N−1)N

= P − cN
RN−1

RN
(�RN −�RN−1) (17c)
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where p0
i(i+1)(i = 1,2, . . . , N − 1) denotes the pressure on

tube i due to tubei + 1 prior to buckling, a uniform radial
externalpressurep on the multi-carbon nanotubes.

Combination of equations (15) and (17) gets

p0(N)
2 − p0(N−1)

2 −, . . . ,−p0(2)
2 − p0(1)

2 = pRN . (18)

All pressures p0
l and p0

l(l+1) can be determined from
equations (16) and (17). Substitution ofp0

l into equation (15)
yields the relationships ofp0(l)

2 (l = 1,2, . . . , N ), and then
substitution ofp0(l)

2 into equation (18) yields the relationships
of p0( j)

2 and p.
Considering a simply supported multi-walled carbon

nanotubes, its buckling mode is given by

u(l)3 = Al sin
mπx

L
cosnθ (l = 1,2, . . . , N) (19)

whereAl are real constants;L is the size of the double-walled
carbon nanotube; andm and n, both positive integers, are
the number of half-waves in the longitudinal direction and the
circumferential wavenumber, respectively.

For the multi-walled carbon nanotubes, combination of
equations (14) and (19) yields
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where Bm = mπ
L , η j = n

R j
( j = 1,2,3, . . . , N), and the

expressions of�1,� j ,�N are given as
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Equations (20) can be written in matrix form:

(M1 + M0)A = 0 (21)

whereM1, M0 andA are given by

M1 = diag
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whereh̄ is an assembly operator and the matrixcl is
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andA is a nonzero vector. Let

det(M1 + M0) = 0. (22)

Equation (22) can be written as

ϕ(p) =
N∑

k=0

ak pk = 0. (23)

The smallest real root of equation (23) is the critical
buckling pressure for the multi-walled carbon nanotubes.

For N = 2, the critical axial buckling pressure can be
obtained from equation (23), which gives
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When the effect of small size-scale is neglected,
equation (24) can be reduced to the classic (local) result:
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The expressions ofs1, s2, H1, H2 are given as
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(a)

(b)

Figure 3. The ratio of ψ via the tube’s inner radiusR1.

4. Numerical examples and discussions

In the numerical results, the effective bending stiffness isD =
0.85 eV, while the in-plane stiffness isEh = 360 J m−2

(Yakobsonet al 1996). In calculations, the size of a C–C bond
is 0.142 nm, the Poisson’s ratio of the materialν is 0.26, and
the thickness of the carbon nanotube ish = 0.34 nm (Yoon
et al 2003b).

To illustrate the influence of small size-scale on the critical
radial buckling pressure of adouble-walled carbon nanotube,
the ratioψ of the pressure predicted by equation (24) to that
given by equation (25) is discussed:

ψ = p

pcr

= Y − √
Y 2 − 4X Z

s2η
2
1H1(B2

m + η2
1)

2 + s1η
2
2 H2(B2

m + η2
2)

2 − √
U 2 + 4V 2

.

(26)

The closer the value ofψ is to 1, the smaller the effect of the
small size-scale is; ifψ is equal to 1, the effect of the small
size-scale will disappear.

Figures3(a) and3(b) show the relationship of the effect
of the small size-scale on the radial buckling pressure of
double-walled carbon nanotubes to its inner radius,R1. It is

(a)

(b)

Figure 4. The ratio of ψ via the tube lengthL.

observed from figure3 that the effect of small size-scale on the
radial buckling pressure decreases as the tube’s inner radiusR1

increases, and the effect of the small size-scale will gradually
disappear when the inner tube radiusR1 is beyond 2 nm.

Figures4(a) and4(b) imply the relationship between the
ratio ofψ and the tube lengthL. It is obvious that the effect
of small size-scale decreases as the tube lengthL increases.
When the tube length reaches 2.5 nm, which is about 20 times
of the inner feature lengtha, the effect of small size-scale will
gradually disappear.

Figure 5 shows that the effects of small size-scale will
increase with increases in buckling modesm and n if the
effects of small size-scale existin the radial and axial direction
(R1 < 2 nm, L < 2.5 nm). Figure6 shows that the effects
of small size-scale will increase with the increase in buckling
modem, and the effects of small size-scale will be independent
of n if the effects of small size-scale disappear in the radial
direction(R1 > 2 nm). Figure7 shows that, if the effects of
small size-scale disappear in the axial direction(L > 2.5 nm),
the effects of small size-scale will increase with an increase
in buckling moden, and the effects of small size-scale will
remain invariable even ifm varies. Figure8 reveals that, when
the effects of small size-scale disappear in the radial and the
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Figure 5. The effect of small size-scale via the tube modesm andn.

Figure 6. The effect of small size-scale via the tube modesm andn.

axial directions, the effects of small size-scale will disappear
if the effects of small-size scale disappear in the radial and the
axial directions. This can be interpreted as follows. The effects
of small size-scale result from the long-range force. The long-
range force exists only among these atoms whose distance is
within a critical range. There is no force between two atoms
when their distance exceeds the critical range. Therefore, there
is a critical size of CNTs for which the effects of small size-
scale disappears.

5. Conclusions

A nonlocal multi-walled shell model has been developed for
the radial buckling of multi-walled carbon nanotubes under
a uniform external radial pressure. Based on the theory of
nonlocal elasticity, the average stresses of a representative
element volume act as the nonlocal stress; the basic equations
of a shallow shell are given.

The influence of small size-scale on the critical radial
buckling pressure is discussed. It is revealed that the buckling
pressure is influenced by the small size-scale. The effect of the
small size-scale is dependent on the buckling mode, length and

Figure 7. The effect of small size-scale via the tube modesm andn.

Figure 8. The effect of small size-scale via the tube modesm andn.

radius of the carbon nanotubes. The effects of small size-scale
will disappear when the size of CNTs exceeds a critical size.
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